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Abstract: This paper presents a two-level control scheme for the energy management of an electricity
prosumer node equipped with controllable loads, local generation, and storage devices. The main
control objective is to optimize the prosumer’s energy bill by means of intelligent load shifting and
storage control. A generalized tariff model including both volumetric and capacity components
is considered, and user preferences as well as all technical constraints are respected. Simulations
based on real household consumption data acquired with a sampling period of 1 s are discussed.
The proposed control scheme bestows the prosumer node with the flexibility needed to support smart
grid use cases such as bill optimization (i.e., local energy trading), control of the profile at the point
of connection with the grid, demand response, and reaction to main supply faults (e.g., islanding
operation), etc.
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predictive control

1. Introduction

1.1. Background and Aim

The decreasing cost of photovoltaic (PV) [1] and storage [2] technologies is accelerating the
transition towards the smart grid of the future [3]. Prosumer nodes will become fundamental
actors of the grid and dedicated energy management systems (EMSs) will be needed for them.
This paper presents an EMS for the control of energy flows in a prosumer node hosting loads,
storage devices, and a renewable plant. The benefits are: (1) minimization of the energy bill;
(2) the possibility of participating in demand response (DR) schemes; and (3) increased resilience
against grid power outages.

The proposed EMS works based on a combination of economic model predictive control (EMPC)
and standard feedback control. EMPC works in discrete-time and plans the optimal activation of the
energy resources in a given time window ahead of the current time (a predictive control technique).
The EMPC formulation includes mathematical models of the node’s dynamical devices: the energy
storage system (ESS), and the plug-in electric vehicle (PEV) (a model-based technique), as well as
forecasts of the relevant flows affecting the node’s power balance (e.g., power consumed by loads,
power generated from renewable plants, etc.). EMPC results in the proactive and efficient operation of
the node. A second, low-level proportional–integral–derivative (PID) feedback control loop is added
in order to mitigate the effect of uncertainties and disturbances, and thus to reduce the error between
the actual power profile of the node and the optimal one planned via EMPC.

To provide a concrete case study, the paper focuses on a residential scenario. Commercial,
tertiary, and industrial scenarios can be addressed as well with proper customizations.
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1.2. Related Works

Over the last decade, DR policies, algorithms, and enabling technologies have attracted attention
in several sectors of the academic community. A review of the many concepts and methods in EMS
design and DR problems can be found for example, in [4–7].

The potential benefits coming from the large-scale adoption of the DR paradigm have been the
subject of several studies focusing on different aspects of network operation. For example, in [8] the
potential impacts of DR on service reliability in a Finnish residential distribution system are evaluated
both on a qualitative and quantitative basis. Typical load profiles of household appliances and the
related flexibilities are identified and then, for every contingency, feasible modifications of appliance
load profiles are considered such that the lowest possible interruption cost is realized; the obtained
results are finally combined to calculate service reliability indices. Reasoning at higher level of power
system operation, in [9] it is stated that DR has a large potential for the provision of short-term
services such as spinning reserve or primary control and for damping residual load gradients. The DR
potential is instead recognized as being lower for longer-term services like secondary or tertiary control.
The reason for this conclusion is that the potential of DR is not limited by the magnitude of shiftable
capacity but by the maximum shift duration, which makes it useful for fast and short-term services
but less useful for longer shifts.

A key aspect for assessing the potential of DR is the user responsiveness, which has been
recognized as being influenced by several variables, such as the pricing scheme and incentive
mechanism [10], the type of loads [11], the presence of generation from renewable sources [12],
the occupancy of the household [13], and the weather [14]. All these factors result in a variability
of performances; something that is confirmed by the quantitative results reported in the context of
successful pilot projects running in Germany [15], Belgium [16,17], and the Netherlands [18].

The pricing scheme undoubtedly constitutes a key factor for introducing flexibility in the demand.
In order to facilitate this process, over the last years retailers have started to design new tariff
schemes, with which the risk related to the volatility of energy price in the market is shared with
their customers [19]; typical examples of well established pricing models are the time-of-use (TOU),
day-ahead pricing (DAP), critical peak pricing (CPP), and real-time pricing (RTP) [20,21]. However this
key aspect continues to be the subject of intensive research. For example, in [22] a pricing algorithm is
proposed with the aim of reducing the peak-to-average ratio of the aggregated load demand in the
practical case when the retailer is uncertain about user responsiveness. Also, in [23] it is shown that
simple time-varying pricing schemes might create pronounced rebound peaks in the aggregated
residential demand. To cope with this negative effect caused by the synchronization of the individual
demands, new electricity price structures called Multi-TOU and Multi-CPP are proposed.

The Dutch pilot study reported in [18] represents a real-life experience in which both manual
and automated DR were studied over a long period of time (>1 year) to assess the overall household
flexibility and the effect of variable peak pricing on the peak load. To assess user responsiveness on
quantitative basis, two comparable groups of users were considered, which were subject to a different
moment of evening peak pricing. The results reveal that the flexibility mainly comes from the
white appliances (i.e., the washing machine, tumble dryer, and dishwasher); also, while the manual
intervention of users in response to price signals seems to be stable over the time, the automation of
the load-shifting process appears beneficial for the improvement of the overall system performance.

The benefit coming from the use of an EMS for automated participation in DR programs is largely
recognized as fundamental in more challenging scenarios, in which multiple sources of energy like local
generators from renewable energy sources (RESs) and ESSs have to be managed in combination with
relatively new types of loads, such as PEVs, and in the presence of complex electricity price structures.
This is the case of prosumers, which pursue the typical objective of minimizing the operational costs of
their microgrid not only by optimizing the power withdrawal from the grid, but also by maximizing the
self-consumption and selling the residual energy. Several studies have been performed and reported
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in the relevant literature, which typically differentiate with respect to the considered equipment and
the related operational constraints, the applied pricing schemes, and the control strategy.

Rule-based methods, based on e.g., “if–then” rules, are widely used in current EMSs because of
their simplicity and low computation load. In [24], the rules are used in the context of a microgrid
for assuring that the power consumption of the electrical appliances is always lower than the
threshold, also exploiting the internal microgeneration. In [25], a rule-based EMS was proposed,
which takes advantage of the “Rete” algorithm, a typical pattern-matching algorithm for “if–then”
rules. Despite their ease of implementation, rule-based control algorithms may be oversimplified and
lack the lookahead capability of the predictive control techniques.

Advanced EMSs typically rely on different forms of optimization, such as linear programming [26],
binary linear programming [27], non-linear programming [28], mixed-integer linear programming
(MILP) [29–31], mixed-integer non-linear programming [32], and multiparametric programming [33].
These techniques are typically used for day-ahead scheduling or real-time scheduling, through the
integration in event-driven or time-driven model predictive control (MPC) frameworks. In this regard,
the idea of periodically re-optimizing is currently largely accepted as a way to manage the occurrence
of real life events and inaccurate system modeling.

For example, in [27] an event-driven MPC algorithm based on binary programming was proposed
to schedule smart household appliances. The enabled use cases include: overload avoidance,
minimization of the electricity bill, presence of a TOU tariff, and real-time reaction to price and
volume signals. An extension of the work in [27] is presented in [29], which details an MPC framework
based on MILP, integrating the ESS, the PEVs, and microgeneration, tested in presence of DAP and
RTP tariffs. The formulations in [27,29] provide a way to quantify the minimum remuneration that
a qualified market player has to pay to the user for the active participation in the DR program.

In [30] another interesting MILP formulation is proposed to jointly schedule demand, generation
(also including RESs), and ESSs in a microgrid. The uncertainty in the demand and the power
generation from renewables is managed through a rolling horizon approach and the periodic updates
of input data. Part of the demand is considered flexible, but penalties are associated with the
delay of loads. An extension of the work is presented in [31] where the heating is integrated in
the scheduling problem for the microgrid; also, the interruptions in the energy demand are taken into
account, under penalties in the economic objective function. A focus on the schedule of the heating
system is also provided in [34], considering a microgrid integrating multiple micro combined heat
and power (microCHP) generators. A similar scenario is investigated in [33], where a state-space
multiparametric program working in a rolling horizon framework is proposed. The characterizing
aspect of the approach in [33] is that it allows for management of bounded uncertainties. The authors
show that by considering as uncertain parameters the set of variables that describe the state of the
system at the beginning of the prediction horizon, it is possible to formulate a set of state-space
multiparametric programming problems that are solved just once and off-line. The output of these
problems provides a complete set of control signals as a function of uncertain parameters. The paper
overcomes the limitations related to the occurrence of multiple disruptive events, but the authors
emphasize the necessity to solve a number of multiparametric programming problems, in case binary
or semicontinuous variables are included in the initial state of the system.

When the optimization problem is characterized by a high level of complexity, alternative solution
methods for dealing with optimization problems are used for the management of microgrids,
such as evolutionary methods, logic-based techniques, and relaxation and decomposition methods.
Genetic algorithms can be used when large mathematical formulations requiring large computational
effort to reach the optimal solution are used [35,36]. For example, in [36] the authors discuss how
a local EMS can be designed to optimize the size and operation of an ESS, minimizing the effect of
aging and replacement costs. Other heuristic techniques proposed are for example particle swarm
optimization [37] and metaheuristic Tabu search [38].
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Moreover, logic-based optimization techniques, like constraint programming [39], have been
proposed to simplify the modeling phase, reduce the combinatorial search efforts, and improve the
handling of non-linearities. Other approaches applied in this area are Lagrangian relaxation [40],
and the Benders decomposition [41]. For extensive reviews about the optimization techniques applied
to the microgrid the reader can refer to [42,43].

Learning techniques have been applied as well in the context of residential EMSs. In [44],
artificial neural networks were proposed as a tool for load scheduling with the aim of maximizing the
self consumption from local renewable energy sources (RESs). The appliances self-organize and then
a coordinator makes corrections in order to provide a feasible and optimal schedule. The approach
cannot be used in a real-time framework, since the user must provide in advance the list of appliances
to be executed within the scheduling period. In [45], the authors present a Markov decision process
formulation integrating the concept of utility functions. Reinforcement learning in the form of
Q-learning is used to find a policy which establishes a trade-off in the long run between the need of
optimizing the cost of electricity and the dis-utility deriving from task delays. The delicate points here
are the selection of the utility functions and the potentially high dimension of the state space.

Other interesting approaches are presented in [46–48], which propose a joint formalization of the
day-ahead capacity procurement problem and the real-time demand response problem, in the presence
of renewable energy source (RES) uncertainty. Appliances are modeled via utility functions and,
as in [45], the strong assumption that appliances can adapt their demand within a continuous power
interval and without power correlations among phases is made. Household appliance manufacturers
instead recommend a specific power profile for each appliance program, and allow only for minor
deviations, like temporarily suspensions after specific phases. This aspect of the detailed modeling of
the appliances’ power profile is rarely taken into account in literature.

The present paper represents an extension of the previous works [27,29], which are in the class of
the MPC framework.

The MPC has been already proposed in this field, as it naturally handles multivariable control
and the presence of constraints, both typical features of EMS problems. In [49], a switched MPC
control strategy is presented for the energy management of a standalone system composed of a PV
module, a diesel generator, and a battery bank. Charging and discharging efficiency factors are
estimated online (the same technique could be adopted in this work), while the switching between
charging and discharging is decided based on a heuristic. The aim is to: (1) minimize the usage
of the diesel generator; (2) maximize the usage of PV power; and (3) minimize battery activation.
The included constraints are on the energy flows, on the ESS state of charge (SOC), and mutually
exclusive charging/discharging activation. In the present work, some of the assumptions made in [49]
are removed, namely, the assumptions on rigid loads (in [49] loads’ starting times are not managed)
and fixed charging/discharging switching times. Also, an economic term is included here in the target
function to minimize the bill.

Several heuristic and evolutionary DR strategies have been developed to cope with the
non-linearities involved in the problem (see e.g., [50,51]) . In advanced tariffs, the price/cost of the
energy changes depending on the direction and the magnitude of the power flow between the node and
the grid. Recently however, MILP models have been developed which are able to model the trading
with the grid with a linear formulation including Boolean variables. For example, in [52,53]—the works
in literature closest to the present one—deal with MPC optimization of the energy bill in a microgrid
with loads, local generation, and ESS. Based on [54], they derive a linear formulation for controlling
the energy trading with the grid. The present work extends [52,53] by introducing: (1) a more
general tariff model (which entails a more involved exact linearization); (2) more detailed modeling
of controllable loads (beyond on/off load activation); (3) inclusion of PEV charging compliant with
standard IEC61851 [55]; (4) introduction of a second control level to mitigate the effect of disturbances
and uncertainties on the node power profile; and (5) simulations in a very realistic setting (1 s resolution
of consumption data). Another interesting contribution is found in [56], which presents a setting similar
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to the references above, and in addition proposes a soft peak power-limiting strategy consisting in the
integration into the MILP problem of a critical peak pricing scheme, something which is generalized by
the present paper. Additional and similar recent MILP formulations of a residential EMS are presented
in [57], which uses it to assess the DR-driven load pattern elasticity of smart households, in [58],
which minimizes the response fatigue of the controlled devices and considers uncertainties of PEV
availability and small-scale renewable energy generation, and in [59], which aims at minimizing costs
and maximizing user convenience in the context of real-time and capacity-based pricing schemes
(for the capacity-based tariff case, Park et al. [59] considers a quadratic tariff function and proposes
an approximate technique).

1.3. Main Contributions

The distinctive features and innovations of this work are as follows.

1. The formulation of the problem is very general and flexible, integrating plannable and
non-plannable demand, local generation, and ESS/PEV control. The formulation can integrate
heterogeneous tariff models (volumetric, capacity, and mixed models, including flat rates,
day-ahead pricing, time-of-use pricing, real-time pricing, inclining block rates, critical peak
pricing, and two-part tariff schemes [60]). Smart appliances are modeled in a realistic and detailed
way: the EMS takes as input the detailed load forecast computed by the smart appliance for
each program to be executed, something which is already made available by today’s smart
appliances. The integration of PEV charging is also realistic and compliant with the applicable
standards on alternating current recharging. Being based on high-level MPC control and low-level
PID control, the proposed scheme is fully compatible with the dynamics of a real environment,
such as real-time interaction with the user and fluctuations in the PV power output. This richness
and flexibility of the formulation significantly differentiates it from the other works present in
literature, and makes it suitable for a possible practical implementation.

2. The EMS presented here can tackle an articulated electricity tariff model which includes both
volumetric and capacity components. This is expected to be very relevant in the light of
the future evolution of the electricity tariffs as a way to implement implicit DR schemes,
through e.g., increased incidence of the capacity component coupled with real-time variation
of the prices. The natural mathematical formulation to cope with this complexity is non-linear,
and computationally not compatible with a real implementation of the controller. In this paper
it is shown how the natural mathematical formulation can be linearized exactly, resulting in
a computational effort in line with a practical implementation.

3. A combination of MPC and standard feedback control is used for increased resilience to
uncertainties and disturbances. Although the necessity for such a scheme is acknowledged
in literature (e.g., [52]), to the best of the authors’ knowledge this is one of the first works to
investigate it in practice. Furthermore, the interaction among the two controllers is an interesting
research line to be investigated in future works.

4. Real generation and consumption data are used [61], with high time resolution (1 to 6 s) and high
granularity in terms of monitored loads (53 monitored loads, plus the node meter). This makes the
simulations more realistic compared to previous works, where the data used in the simulations are
mostly 15-min based, if not in the order of half-hour periods. This is relevant, because the metering
data show that the PV output and the load curves of the appliances can have significant variations in
the time frames on the order of the seconds. Similarly, the load profiles are real ones, and so are the
associated request times. This makes the simulations very realistic, because they are based not only
on real data, but also on real dynamics of the household (as a matter of fact, one of the complexities
of building the simulation setting has been that of acquiring and isolating from the data repository
provided in [61] all the load profiles occurring during the simulated time frame).

5. The points listed above are also the main innovations of the present work with respect to our
previous works [27,29].
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1.4. Paper Organization

Section 2 details the reference scenario. Section 3 discusses the use cases enabled by the proposed
control strategy. Section 4 explains the EMS control logic. Sections 5 and 6 detail the mathematical
formulation of the two EMS control levels. Section 7 discusses the results of the work. Section 8
discusses the limitations of the work. Section 9 concludes the work and presents the future works.

2. Reference Scenario

This study takes as reference scenario a prosumer node connected to the electricity grid and
equipped with consumption, generation, and storage resources (Figure 1). Notable devices inside
the prosumer node include: the loads, the ESS, the PEV, the PV plant, the smart meter, and the smart
plugs. The main actors involved in the EMS problem are: (1) the distribution system operator (DSO),
which establishes the node power limits; (2) the retailer, which has an energy contract with the user;
(3) aggregators, mediating between the node and the previous actors in case the node is part of a wider
energy community; and (4) other service providers (e.g., PV forecasting providers).

Figure 1. Reference scenario. ESS: energy storage system; PEV: plug-in electric vehicle;
PV: photovoltaic.

A survey on the actors and devices involved in the node EMS problem and the different
architectural choices can be found in [62]. In the following, more modeling details are given regarding
the appliances, the PEV and the tariff scheme.

2.1. Appliances

Appliances (also named loads here) are either plannable or non-plannable. Management of
plannable appliances is left to the EMS. The user sets the preferences in terms of first allowed start time
(Sl , l denoting the load) and the latest allowed end time (El). Plannable appliances make available to the
EMS a forecast of the adsorbed power curve. The EMS decides when best starting the plannable load.
Non-plannable appliances offer no load-shifting flexibility. However, non-plannable loads that make
a consumption forecast available to the EMS can be integrated in the EMS problem. Instead, those that
do not make available consumption forecasts (e.g., legacy appliances) act as a disturbance in the EMS
problem. Their impact is mitigated through the feedback, second-level controller. Another solution
could be to estimate their consumption through the analysis of data at granular level—i.e., via local
smart plugs—or at node level, via disaggregation techniques [62].

2.2. PEV

PEVs can be capable of both load shifting and modulation. The EMS manages charging/discharging
considering the preferences set by the user (latest allowed charging completion time Fpev and final
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desired SOCpev,req. PEV control is compliant with standard IEC 61851 [55]. According to this standard,
charging can be either zero, or greater than a minimum positive value level (i.e., arbitrarily small
charging power is not allowed). This leads to the inclusion of semi-continuous variables.

2.3. Tariff Model

Electricity tariffs can be reduced to a combination of the volumetric and the capacity-based
models [60]. Volumetric tariffs (e.g., flat, fixed, time of use, dynamic tariffs [60]) charge the amount
of consumed energy (EUR/kWh), irrespectively, in their pure form, of the power consumption
pattern (with or without load peaks). They are still the most widespread tariff model for distribution
customers. In their pure form they do not reflect the costs of operating the grid, which are mainly
capacity-driven [60]. Capacity tariffs bill the energy based on the level of consumption capacity
(i.e., the level of consumption power (EUR/kW)). They penalize consumption peaks and hence
contribute to flattening the load curve.

The tariff scheme adopted in this paper is a combination of the two models. It is mathematically
described as a function C(k, P(k)), where k is the time and P(k) the power exchanged with
the grid at k (see example in Figure 2). C is assumed to be piece-wise constant in the power
interval [Pmin, Pmax], being Pmin the injection power threshold and Pmax the consumption power
threshold of the node. Cj(k) denotes the energy tariff value at time k for the generic jth power
interval ∆Pj(k) = [∆Pmin

j (k), ∆Pmax
j (k)] in which the tariff function is constant with respect to the

power variable. The dependence of C on time allows to integrate time varying pricing models.
The dependence on the power level allows to include the capacity models.

Figure 2. Example of tariff function C(k, P(k)) at a generic time k.

3. Use Cases

The proposed EMS enables the following use cases.

1. Optimization of the energy bill: This use case captures the normal operative condition, where the
main objective is to optimize the energy bill. The re-optimization scheme at the base of EMPC
allows support of time-varying tariffs (i.e., real-time energy trading).

2. Reaction to faults and attacks to the grid: The proposed control strategy can increase node
resilience to adverse events by changing the way the energy assets are operated during the
emergency conditions, with several measures:

• Before the emergency begins, the ESS and the PEV are recharged in view of possible operation
in the absence of power supply from the grid (islanded operation).

• Self-consumption is maximized in order to prolong the operation of the node in the absence
of main power supply.
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• Low-priority loads are shed as last resort measure in order to prolong the operation of the
critical loads in the node.

3. DR applications: The node can implement DR actions by reacting to price signals (modifications
of the tariff) and volume signals (modifications of the node power thresholds).These DR measures
allow grid actors, like aggregators, to harvest flexibility and compose balancing services.

4. Proposed Control System Logic

Figure 3 illustrates the control architecture of the proposed EMS. There are two main controllers:
a high-level, slower EMPC controller, and a low-level, faster, PID controller.

Figure 3. Block diagram representation of the proposed control scheme. EMPC: economic model
predictive control.

1. The high-level EMPC controller computes the optimal planning of the energy resources by
controlling the ESS, the PEV, and the activation time of the shiftable loads. It works with
a temporal resolution on the scale of minutes (1 minute in the simulations), based on SOC
feedback retrieved from the ESS/PEV and a set of technical, economical and consumer-driven
boundary conditions (e.g., user preferences, tariff values, PV forecasts, etc.).

2. The low-level PID controller works at high sampling rate (1 s in the simulations, but potentially
even higher rates—e.g., kHz, as required by the use case) and compensates for the impact
of uncertainties (e.g., on PV and appliances’ consumption forecasts) and disturbances
(e.g., activation of non-monitored loads, etc.). It takes as reference the node power profile
resulting from EMPC computation (P), and compares it against the smart meter node power
measure Pmeasured; it then activates the ESS to compensate for mismatches.

EMPC [63] is a variant of MPC [64], an optimization-based technique in which, at the generic
discrete time k, the plant control signals are computed by solving a constrained optimization problem
defined in a time window N steps in the future (i.e., [k, k + N − 1]). The first sample of the computed
control is applied to the plant and the process is reiterated at time k + 1. The generic optimization
problem at time k is built based on the feedback of the state of the plant. Closed loop properties arise
from the combination of state feedback and continuous re-optimization. MPC enables multi-variable
constrained control and offers great flexibility through the proper selection of the objective function.
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In standard MPC, the objective function is selected with the aim of stabilizing the plant around
a desired reference state. In EMPC, instead, the objective function is selected to optimize the economical
operation of the system (for practical and theoretical implications of EMPC, see e.g., [63,65]).

The controlled plant here is given by the plannable loads, the ESS, and the PEV. The control
signals computed through EMPC are: the starting times of the plannable loads, the ESS and the PEV
control signals. Furthermore, at each time k the EMS retrieves the state of all the plannable loads
currently controlled (started or not-started; non-started loads can be re-scheduled) and the SOC of
the ESS and the PEV. The EMPC controller takes the following further inputs: (1) new user requests;
(2) updates of the tariff (in the case of real-time pricing); (3) updates of the node power limits (in the case
of DR); (4) updates of the PV forecasts; and (5) updates of the loads’ forecasted consumption profiles.

Summarizing, the EMPC controller has a planning scope, and acts based on energy feedback
(i.e., SOC feedback). If it had perfect and complete knowledge of the loads and generation sources
in the node, the second-level fast PID controller would not be needed. The role of the PID controller,
which acts based on feedback of power measurement from the smart meter, is indeed that of activating
the ESS to compensate for disturbances on the node power profile planned at EMPC level. The two
controllers influence each other, since they both act on the ESS (the second-level controller perturbs the
SOC feedback acquired by the EMPC one, while the ESS setpoint computed at EMPC level may in
practice limit the control possibilities at second PID level; e.g., the ESS EMPC setpoint may be close
to the ESS upper/lower threshold and thus make further up/down ESS control corrections by the
PID impossible).

The mathematical formulation of the two controllers is detailed in the two following sections.

5. Design of the EMPC Controller

The core of the proposed EMPC controller is the optimization problem described in this section.
In the following, k denotes the current time, N ∈ N the MPC control horizon, and T ∈ R the
discretization time step.

5.1. Objective Function

The proposed objective function V(k) captures the energy-related costs/profits of the prosumer
node. It is composed of three terms, accounting for: (1) costs/revenues from the energy exchanges with
the grid; (2) costs/revenues from storing power in the ESS; and (3) depreciation costs for the devices.

V(k) = V(k)grid −V(k)ess + Vdep(k) (1)

where:

• V(k)grid captures the costs/revenues due to the energy exchanges with the grid over the control
interval [k, k + N − 1]. V(k)grid = ∑k+N−1

i=k P(i)TC(i, P(i)), where P(i) is the power exchanged
with the grid at i and C(i, P(i)) the tariff. V(k)grid can be exactly linearized, as shown in
Section 5.2.11.

• V(k)ess prices the delta of energy stored in the ESS at the end of the control window, compared
to the amount stored at the initial time k. V(k)ess = Cess[SOCess(k + N)− SOCess(k)]Eess/100.
SOCess(k) is the SOC of the ESS, expressed in percentage of the maximum energy capacity Eess.
Cess prices the energy stored in the ESS.

• V(k)dep = ∑k+N−1
i=k (Cdep,ess|Pess(k)| + Cdep,pev|Ppev(k)|) is the depreciation cost due to the

activation of the ESS and the PEV. Cdep,ess and Cdep,pev are depreciation cost factors weighting
the charging/discharging powers. Pess(k) and Ppev(k) are respectively the ESS and the PEV
exchanged power at k. The depreciation term makes sure that the ESS and the PEV are activated
only when the deriving economic benefit overcomes the depreciation costs.
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5.2. Constraints

Constraints below are defined for all the times i ∈ [k, k + N − 1].

5.2.1. Power Balance Equation

The power exchanged between the node and the grid at i is given by

P(i) = Pnpl(i) + Ppl(i) + Pess(i) + Ppev(i) + Ppv(i) (2)

where Pnpl , Ppl , Pess, Ppev and Ppv are, respectively, the power from non plannable loads,
from plannable loads, from the ESS, from the PEV and from the PV panel.

5.2.2. Power of Plannable Loads

Ppl(i) is given by (see [29])

Ppl(i) = ∑
l∈L(i)

min{i,Fl−Nl+1}

∑
j=max{Sl ,i−Nl+1}

Pl(i− j + 1)sl(j) (3)

where L(i) is the set of plannable loads to be controlled at time i, Sl the earliest allowed start time for
load l, Nl the load duration in time slots, Fl the latest allowed termination time, Pl the power consumed
by load l and sl(j) a Boolean control variable equal to one if and only if load l is scheduled to start at
time j.

5.2.3. Power of the ESS

The ESS power can be written as follows:

Pess(i) = Pess,c(i) + Pess,d(i) (4)

where Pess,c(i) and Pess,d(i) are, respectively, the power absorbed and discharged by the storage at
time i.

5.2.4. Power of the PEV

Similarly
Ppev(i) = Ppev,c(i) + Ppev,d(i) (5)

5.2.5. ESS Activation

The ESS either absorbs or discharges power at a given time:

0 ≤ Pess,c(i) ≤ Pess,maxcess(i) (6)

0 ≤ −Pess,d(i) ≤ −Pess,mindess(i) (7)

cess(i) + dess(i) ≤ 1 (8)

The first two constraints ensure that the Boolean variables cess(i) and dess(i) are equal to one if and
only if, respectively, the ESS is charged or discharged at i. Constraint (8) then ensures that charging
and discharging are mutually exclusive.
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5.2.6. PEV Activation

Similarly,

0 ≤ Ppev,c(i) ≤ Ppev,maxcpev(i) (9)

0 ≤ −Ppev,d(i) ≤ −Ppev,mindpev(i) (10)

cpev(i) + dpev(i) ≤ 1 (11)

5.2.7. Minimum PEV Charging/Discharging Power

Standard IEC 61851 [55] requires the PEV charging/discharging power to be either zero or greater
than a positive threshold (Ppev,iec).

Ppev,c(i) ≥ Ppev,ieccpev(i) (12)

−Ppev,d(i) ≥ Ppev,iecdpev(i) (13)

5.2.8. ESS SOC Dynamics

The ESS SOC dynamics can be written as follows:{
SOCess(i + 1)=SOCess(i)+ T(Pess(i)−ξess |Pess(i)|)

Eess 100

SOCess(k) = SOCess
k

(14)

where ξess accounts for losses. |Pess(i)| = Pess,c(i) − Pess,d(i). Eess is the energy capacity of the
storage (kWh). SOCess

k is the SOC value at k (i.e., the SOC feedback).

5.2.9. PEV SOC Dynamics

Similarly, 
SOCpev(i + 1)=SOCpev(i)+ T(Ppev(i)−ξ pev |Ppev(i)|)

Epev 100

SOCpev(k) = SOCpev
k

SOCpev(Fpev) ≥ SOCpev,req.

(15)

The last constraint ensures that the PEV is recharged at the desired level within the desired time.

5.2.10. No Arbitrage Constraints

A range of constraints could be imposed to avoid the ESS or the PEV being used to trade with
the grid beyond the strict energy needs of the node (e.g., to exploit arbitrage conditions such as
buying cheap power and selling it back when the tariff is higher). Arbitrages are limited in practice
by the losses associated with ESS charging and discharging, so that they appear only when the
difference between tariff’s maxima and minima are very high, or in case of very efficient equipment.
Such constraints are not included in the simulations below. They can be given on the behavior of the
entire node and/or on the behavior of only the storage elements. A very strong condition could be to
require the node to behave as a passive one

P(i) ≥ 0 (16)

Conditions on the ESS could be:

• To allow the ESS to recharge only from the power locally generated (strong condition).

Pess,c(i) ≤ −Ppv(i) (17)



www.manaraa.com

Energies 2018, 11, 48 12 of 23

• To allow the ESS to discharge power only to balance local loads (softer condition).

− Pess,d(i) ≤ Pnpl(i) + Ppl(i) + Ppev,c(i) (18)

5.2.11. Linearization of the Objective Function Term V(k)grid

The term V(k)grid = ∑k+N−1
i=k P(i)TC(i, P(i)) can be linearized as shown in the following. Let us

partition the power interval [Pmin, Pmax] into L sub-intervals ∆Pj(i) = [∆Pmin
j (i), ∆Pmax

j (i)], such that
a given energy price, say Cj(i), is associated to each sub-interval (i.e., the energy price is constant
with respect to the power variable in ∆Pj(i)). The dependence on i means that the tariff can be
time-varying. ∆Pmin

j and ∆Pmax
j are such that ∆Pmin

1 (i) = Pmin, ∆Pmax
j (i) = ∆Pmin

j+1 (i) for j = 1, ..., L− 1

and ∆Pmax
L (i) = Pmax (so that ∪L

j=1∆Pj(i) = [Pmin, Pmax] and ∩L
j=1∆Pj(i) is a set of zero measure).

A Boolean variable δPj(i) is associated to each power interval ∆Pj(i), and it is equal to one if and only
if the power exchanged with the grid at time i lies in ∆Pj(i) (δPj(i) = 1 ⇔ P(i) ∈ ∆Pj(i)). P(i) can
belong to only one power interval at a time (save the limit cases in which it is exactly equal to ∆Pmin

j (i)
or ∆Pmax

j (i)).
L

∑
j=1

δPj(i) = 1 (19)

The following constraint then forces to one the variable δPj(i) such that P(i) ∈ ∆Pj(i).

L

∑
j=1

δPj(i)∆Pmin
j (i) ≤ P(i) <

L

∑
j=1

δPj(i)∆Pmax
j (i) (20)

Hence, P(i)C(i, P(i)) = ∑L
j=1 P(i)δPj(i)Cj(i), where Cj(i) is the tariff at time i associated to the

power interval j. It is only left to linearize the product of the continuous variable P(i) for the Boolean
variable δPj(i). It suffices [66] to introduce an auxiliary variable, say zj(i), to represent the product to
be linearized, and four auxiliary constraints, as follows:

Pmin ≤ zj(i) ≤ Pmax (21)

PminδPj(i) ≤ zj(i) ≤ PmaxδPj(i) (22)

P(i)−(1−δPj(i))Pmax≤ zj(i)≤P(i)−(1−δPj(i))Pmin (23)

zj(i) ≤ P(i) + (1− δPj(i))Pmax (24)

With the above constraints, zj(i) = P(i)δPj(i) always holds. Hence, V(k)grid can be finally
rewritten in linear form as

V(k)grid =
k+N−1

∑
i=k

L

∑
j=1

Tzj(i)Cj(i) (25)

5.2.12. Variables’ Limits

The limits of the variables are as follows:

SOCess,min ≤ SOCess(i) ≤ SOCess,max (26)

SOCpev,min ≤ SOCpev(i) ≤ SOCpev,max (27)

Pmin ≤ P(i) ≤ Pmax (28)

Pess,min ≤ Pess(i) ≤ Pess,max (29)

Ppev,min ≤ Ppev(i) ≤ Ppev,max (30)
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5.2.13. Constraints on Variables’ Nature

The variables used are of the following types:

SOCess, SOCpev, P, Pess ∈ R (31)

Ppl , Ppev, Pess,d, Pess,c, Ppev,d, Ppev,c ∈ R (32)

sl , cess, dess, cpev ∈ {0, 1} (33)

dpev, δPj, zj ∈ {0, 1} (34)

5.3. The Overall EMPC Problem

EMPC iteration at generic time k: given, over the control window [k, k + N − 1], the value of
the tariff, the PV forecast, and the user requests and preferences for the execution of loads and the
recharging of PEVs, the available power forecasts from plannable and non plannable loads find
the loads’ start times and the PEV/ESS charging control by solving argmin of (1) subject to (2)–(15)
and (18)–(34).

6. Feedback Controller

The presence of unmonitored loads and the disturbances and uncertainties affecting the PV and
the load consumption forecasts, and the ESS and the PEV dynamics, etc., impact on the performance
of the EMPC loop. The feedback controller (Figure 4) is introduced to compensate for this. The control
signal, denoted as ∆Pess, is a correction term which is summed to the ESS control computed at the
EMPC level (see Figure 3). The saturation accounts for the ESS power limitations, which depend both
on the ESS maximum and minimum nominal power, and also on the current SOC (e.g., the ESS may
be unable to provide high power because close to fully discharged). The design of this controller
will be improved in future works, when the control scheme will be integrated with the ESS/PEV/PV
dynamics, and metering data at even higher sampling frequency will be employed (e.g., the 16 kHz
metering data in [61]).

Figure 4. A second-level proportional–integral–derivative (PID) controller.

7. Results

7.1. Simulation Setup

The experimental setup is as follows:

• Node power limits: Pmin = −5 kW, Pmax = 5 kW.
• ESS capacity Eess = 6 kWh. ESS power limits Pess,min = −6 kW, Pess,max = 6 kW. ESS round-trip

efficiency 85.0%, meaning ξess = (1− 0.85)/2 = 0.075.
• A PEV with Epev = 25 kWh, Pmax = 3.3 kW.
• Tariff price as in Figure 5. The figure reports the evolution over 24 h of the Italian reference

electricity price (PUN—“Prezzo Unico Nazionale” [67]).
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• Real PV profiles of a 3 kWp plant (Figure 5).
• Real appliance consumption data from [61] (house 1): 53 loads monitored via smart plugs

at 1/6 Hz, plus node’s metering data at 1 Hz. Figure 6 shows as an example a dishwasher
consumption profile, and two washing machine profiles exhibiting a different variability
(i.e., different program phases).

The EMS has been programmed using the Julia v0.5.2 technical computing language
(http://julialang.org/), on an Intel I7, 8GB RAM machine running Windows 10. The EMPC
optimization problem has been written in Julia, using the JuMP package [68], and has been solved
using the Gurobi 7.0.2 solver [69].

Figure 5. PV output curve and tariff data ([67]).
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Figure 6. Examples of measured appliances’ power profiles (data from [61]).

Simulations presented in the following showcase the use cases of energy bill optimization
(with time of use volumetric tariff and capacity tariff) and the use case of reaction to main supply
power outage. All the simulations presented—and the deriving figures—are based on the real data
acquired in [61], in “house 1”, on 7 and the 8 December 2014 (i.e., the same days displayed in [61]).
Data from [61] have time resolution of 6 s at the level of single appliances, and of 1 second at the level
of the node smart meter. The dataset described in [61] is available for download as a CSV file (how the
data are structured is described in details in [61]). The PV curve data is instead the one from Figure 5.
The figures reported below have been obtained in Julia through the plotting functions of the package
PyPlot [70]. Two types of figures will be presented in the following: (1) plots of the overall power
profile at node level (also called net node power profile, see e.g., Figure 7 below); and (2) stacked bar
plots with the detail of the different power consumptions and injections that concur to the overall net

http://julialang.org/
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node power profiles (power consumptions are plotted as positive bars, power injections as negative
bars—see e.g., Figure 8 below). Four scenarios will be simulated:

1. Scenario 1: power profiles in case the node is not controlled (uncontrolled scenario, i.e., same result
as in [61] for what concerns the appliances).

2. Scenario 2: application of the proposed approach when considering a TOU tariff.
3. Scenario 3: application of the proposed approach when considering a capacity tariff.
4. Scenario 4: simulation of islanding operation in case of main power supply outage.

The fact that all the presented simulations are based on the same data makes possible to compare
the results obtained in the different scenarios.

Finally, an additional note on the nomenclature: in the figures below, P0,1 denotes power from
unmonitored loads, P2 the power from non-plannable loads which make available to the EMPC their
consumption forecast, and P3 the power from plannable loads.

20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000

Figure 7. Scenario 1: Net power profile of the prosumer node (data from [61]).
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Figure 8. Scenario 1: Power consumption and injections within the node (data from [61]).

7.2. Scenario 1: Uncontrolled Power Profile

Figure 7 reports the net power profile at the point of connection with the grid, in the uncontrolled
scenario. It is as in [61], plus the PV and PEV profiles. A PEV charging request is inserted at 17:00 h
on day 1, with 10% current SOC, 100% final desired SOC, and allowed charging time up to 08:00 h of
day 2. The PEV is recharged here in uncontrolled mode (charging at the maximum power, 3.3 kW),
which leads to violation of the power threshold. Figure 8 reports a stacked chart of the different
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power consumptions (positive values) and injections (negative values) at node level. The total cost is
EUR 1.61.

7.3. Scenario 2: Proposed Two-Level EMS

The proposed EMS is effective in shifting plannable loads and PEV recharging to the most
convenient times (Figure 9). The action of the ESS is twofold: it compensates for the unknown loads
and disturbances (low-level control), and it improves the economic performance of the node through
PV self-consumption and balancing of plannable loads and PEV recharging (EMPC control). Figure 10
reports the node power profile computed by the EMPC controller (P), and the corresponding measured
profile Pmeasured, when the second level controller is not enabled. The discrepancies are due to the
presence of unmonitored loads and uncertainties affecting the data input to the EMPC. Figure 11
reports Figure 10 in detail, including also the measured profile (in red) achieved when the second-level
controller is enabled. Figure 12 reports the ESS control detail. The total cost is EUR1.20.
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Figure 9. Scenario 2: Power consumption and injections within the node (data from [61]).

20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000

Figure 10. Scenario 2: Planned and real (measured) net node profile when only EMPC is enabled
(data from [61]).
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140,000 145,000 150,000 155,000 160,000 165,000 170,000

Figure 11. Scenario 2: Further details with respect to Figure 10, showing (in red) the measured net
profile when the second-level controller is enabled (data from [61]).

Figure 12. Scenario 2: ESS SOC and charging/discharging profile (time resolution of 1 s). SOC: state
of charge.

7.4. Scenario 3: Example of Capacity Tariff

It is considered here as an example a capacity tariff in which the cost of the energy from the grid
doubles when the power withdrawn exceeds 2 kW. Figure 13 reports the resulting load profile as
computed by the EMPC. Comparing it with Figure 10, it can be seen how the EMPC controller weights
the information on the 2-kW capacity tariff threshold.

20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000

Figure 13. Scenario 3: Net node power profile resulting from the capacity tariff (data from [61]).
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7.5. Scenario 4: Reaction to Main Power Supply Outage

The EMPC controller can react to notifications of DR signals and adverse events, and plan
resources accordingly in advance (the feedback controller in addition allows a fast reaction to sudden
events). Here a loss of power supply is simulated from the grid during day 1. Figure 14 shows how the
combined action of the two controllers achieves the islanding operation of the node during the outage.
The operation is made possible by the combined action of load-shifting, storage, and self-consumption.
When this is not enough, prioritized load shedding is unavoidable. One of the interesting features of
having a predictive controller is namely that it is able to tell in advance if the resources available are
enough to cope with the interruption of main power supply in a given interval, or rather if shedding
is required.
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Figure 14. Scenario 4: Consumption and injections in islanding operation (data from [61]).

Finally, a note on the computational complexity. This scenario is the most complex one in terms
of number of variables and constraints, and solving times. For this scenario, consisting, like the others,
of 2880 EMPC iterations, the average number of variables, the average number of constraints, and the
average solving times were, respectively, 10,274, 16,883 and 0.99 s. Performances are promising and
could be further improved by designing tailored MILP solving heuristics.

8. Limitations of the Proposed Approach

The proposed approach has some limitations. In terms of technological limitations, the approach
requires the availability of smart meters with advanced metering and communication functionalities,
as compared to the ones currently on the market. These kinds of meters are however being already
tested in pilot studies and are expected to reach the market in a few years. In terms of limitations
regarding practical implementation: additional constraints on the activation of the storage devices have
to be included, in order to ensure that any limitations in the rate of change of charging/discharging
are considered (i.e., ramping constraints—they have been left out in order to not overburden the
formulation). Also, the impact of practical issues such as delays and loss of data, especially in case
of wireless communication, have to be considered for practical implementation. Finally, a practical
implementation of the proposed EMS would also benefit from the introduction of load prioritization
and the possibility of load shedding, which could become necessary in highly congested scenarios or
in case of operation in islanded mode.

9. Conclusions

This paper has presented a two-level energy management system for prosumer nodes. A-high
level controller, based on economic model predictive control (EMPC), optimally plans the energy
resources in a future time window, while a second and faster controller provides additional energy
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storage system (ESS) control to ensure the tracking of the node load profile planned at the EMPC
level. Compared to the works in literature the authors are aware of, both control loops work with
small sampling times and are based on real data, which makes the results highly significant in
practice. The flexibility of the overall scheme allows it to work both in scenarios where pure economic
optimization of the tariff is sought (where DR takes the form of tariff updates and/or price signals—i.e.,
“implicit DR”) and in scenarios foreseeing instead a more direct control of the node load profile
(e.g., DR through volume signals, node profile smoothing, etc.—i.e., “explicit DR”). Future works
will address: (1) a theoretical assessment of the stability of the overall control scheme; (2) a study on
the return on the investments, in the light of cost/price trends; andd (3) the study of the system in
a standalone configuration, with the inclusion of controllable local generation.
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Nomenclature

C Electricity tariff
Cj Electricity tariff value for the power interval ∆Pj
Cess Pricing factor of the energy stored in the energy storage system (ESS)
Cdep,ess Depreciation factor for the ESS
Cdep,pev Depreciation factor for the plug-in electric vehicle (PEV)
cess(i) Boolean variable equal to one if the ESS is recharging at time i, zero otherwise
dess(i) Boolean variable equal to one if the ESS is discharging at time i, zero otherwise
∆Pj j-th interval of powers where the electricity tariff is constant with respect to the power variable
∆Pess Correction of the ESS control resulting from the Proportional-Integral-Derivative (PID) control

δPj
Boolean variable equal to one if the node power consumption is in the interval ∆Pj,
zero otherwise

∆Pmin
j , ∆Pmax

j Bounds defining δPj: δPj ∈ [∆Pmin
j , ∆Pmax

j ]

eP Difference between P and the node power measured by the meter Pmeasured (i.e., power error)
Eess Maximum energy capacity of the ESS [kWh]
El Latest possible finish time for the l-th plannable appliance (decided by the user)
Fpev Latest possible time for completion of the PEV recharging (decided by the user)
k Generic discrete time index
L Number of intervals ∆Pj into which the node power consumption [Pmin, Pmax] is divided
N Integer number denoting the length of the MPC prediction horizon
Nl Integer number denoting the duration, in time slots, of the execution of the l-th appliance

P Node power consumption (i.e., power exchanged between the node and the grid),
as computed by the MPC controller

P0,1
In the simulations, denotes the power from non monitored loads (e.g., legacy loads not
connected through a smart plug)

P2
In the simulations, denotes the power from monitored but uncontrolled loads (e.g., legacy
loads connected through a smart plug)

P3 In the simulations, denotes the power from monitored and controllable loads
Pmeasured Measured node power consumption

Pmax, Pmin Maximum positive (i.e., consumption) and minimum negative (i.e., injection) allowed values
for P

Ppv Photovoltaic (PV) power
Pess Electric ESS power
Pess,c ESS charging power
Pess,d ESS discharging power
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Pnpl Aggregated power consumed by non plannable loads
Ppl Aggregated power consumed by plannable loads
Ppev Power exchanged between the PEV and the node
Sl Earliest allowed start time for the l-th plannable appliance (decided by the user)
sl(j) Boolean variable equal to one if the l-th appliance is started at time j, zero otherwise

SOCpev,req Desired final state of charge for the PEV at the end of the recharging process (decided by
the user)

SOCess State of charge of the ESS
T Discretisation time step
V Target function of the MPC problem
zj(i) Auxiliary variable equal to P(i) if δPj(i) = 1, zero otherwise
ξess(i) Efficiency coefficient of the ESS
()∗ ∗ denotes the actual value of a variable (as opposed to an estimated or measured quantity)

Abbreviations

The following abbreviations are used in this manuscript:

CPP critical peak pricing
DAP day-ahead pricing
DR demand response
DSO distribution system operator
EMPC economic model predictive control
EMS energy management system
ESS energy storage system
MILP mixed-integer linear programming
MPC model predictive control
PEV plug-in electric vehicle
PID proportional–integral–derivative
PV photovoltaic
RES renewable energy source
RTP real-time pricing
SOC state of charge
TOU time-of-use

References

1. Fu, R.; Chung, D.; Lowder, T.; Feldman, D.; Ardani, K.; Margolis, R. U.S. Solar Photovoltaic System Cost
Benchmark: Q1 2016; National Renewable Energy Laboratory (NREL) Technical Report; NREL: Golden, CO,
USA, 2016.

2. D’Aprile, P.; Newman, J.; Pinner, D. The New Economics of Energy Storage. McKinsey & Company
Article. 2016. Available online: https://www.mckinsey.com/business-functions/sustainability-and-
resource-productivity/our-insights/the-new-economics-of-energy-storage (accessed on 11 January 2017).

3. Ipakchi, A.; Albuyeh, F. Grid of the future. IEEE Power Energy Mag. 2009, 7, 52–62.
4. Siano, P. Demand response and smart grids—A survey. Renew. Sustain. Energy Rev. 2014, 30, 461–478.
5. Beaudin, M.; Zareipour, H. Home energy management systems: A review of modelling and complexity.

Renew. Sustain. Energy Rev. 2015, 45, 318–335.
6. Rasool, G.; Ehsan, F.; Shahbaz, M. A systematic literature review on electricity management systems.

Renew. Sustain. Energy Rev. 2015, 49, 975–989.
7. Yang, Z.; Chow, M.Y.; Hu, G.; Zhang, Y. Guest Editorial New Trends of Demand Response in Smart Grids.

IEEE Trans. Ind. Inf. 2015, 11, 1505–1508.
8. Safdarian, A.; Degefa, M.Z.; Lehtonen, M.; Fotuhi-Firuzabad, M. Distribution network reliability

improvements in presence of demand response. IET Gener. Transm. Distrib. 2014, 8, 2027–2035.
9. Aryandoust, A.; Lilliestam, J. The potential and usefulness of demand response to provide electricity system

services. Appl. Energy 2017, 204, 749–766.

https://www.mckinsey.com/business-functions/sustainability-and-resource-productivity/our-insights/the-new-economics-of-energy-storage
https://www.mckinsey.com/business-functions/sustainability-and-resource-productivity/our-insights/the-new-economics-of-energy-storage


www.manaraa.com

Energies 2018, 11, 48 21 of 23

10. Newsham, G.R.; Bowker, B.G. The effect of utility time-varying pricing and load control strategies on
residential summer peak electricity use: A review. Energy Policy 2010, 38, 3289–3296.

11. Newsham, G.R.; Birt, B.J.; Rowlands, I.H. A comparison of four methods to evaluate the effect of a utility
residential air-conditioner load control program on peak electricity use. Energy Policy 2011, 39, 6376–6389.

12. Widén, J. Improved photovoltaic self-consumption with appliance scheduling in 200 single-family buildings.
Appl. Energy 2014, 126, 199–212.

13. Torriti, J. The significance of occupancy steadiness in residential consumer response to Time-of-Use pricing:
Evidence from a stochastic adjustment model. Util. Policy 2013, 27, 49–56.

14. Bartusch, C.; Alvehag, K. Further exploring the potential of residential demand response programs in
electricity distribution. Appl. Energy 2014, 125, 39–59.

15. Kiessling, A. Modellstadt Mannheim (moma)—Abschlussbericht: Beiträge van moma zur Transformation
des Energiesystems für Nachhaltigkeit, Beteiligung, Regionalität und Verbundheid. Final Report. 2013.
Available online: https://www.ifeu.de/wp-content/uploads/moma_Abschlussbericht_ak_V10_1_public.
pdf (accessed on 15 December 2017).

16. D’hulst, R.; Labeeuw, W.; Beusen, B.; Claessens, S.; Deconinck, G.; Vanthournout, K. Demand response
flexibility and flexibility potential of residential smart appliances: Experiences from large pilot test in
Belgium. Appl. Energy 2015, 155, 79–90.

17. Vanthournout, K.; Dupont, B.; Foubert, W.; Stuckens, C.; Claessens, S. An automated residential demand
response pilot experiment, based on day-ahead dynamic pricing. Appl. Energy 2015, 155, 195–203.

18. Klaassen, E.; Kobus, C.; Frunt, J.; Slootweg, J. Responsiveness of residential electricity demand to dynamic
tariffs: Experiences from a large field test in the Netherlands. Appl. Energy 2016, 183, 1065–1074.

19. Zhang, Q.; Wang, X. Hedge Contract Characterization and Risk-Constrained Electricity Procurement.
IEEE Trans. Power Syst. 2009, 24, 1547–1558.

20. Nauman Khan. Smarter Electricity Pricing Coming to Ontario. 2009. Available online: http://news.ontario.
ca/ (accessed on 11 January 2017).

21. COMED. The COMED residential real time pricing program. 2012. Available online: www.comed.com/
Documents/ (accessed on 11 January 2017).

22. Samadi, P.; Mohsenian-Rad, H.; Wong, V.W.S.; Schober, R. Real-Time Pricing for Demand Response Based
on Stochastic Approximation. IEEE Trans. Smart Grid 2014, 5, 789–798.

23. Muratori, M.; Rizzoni, G. Residential Demand Response: Dynamic Energy Management and Time-Varying
Electricity Pricing. IEEE Trans. Power Syst. 2016, 31, 1108–1117.

24. Shakeri, M.; Shayestegan, M.; Abunima, H.; Reza, S.S.; Akhtaruzzaman, M.; Alamoud, A.; Sopian, K.;
Amin, N. An intelligent system architecture in home energy management systems (HEMS) for efficient
demand response in smart grid. Energy Build. 2017, 138, 154–164.

25. Kawakami, T.; Fujita, N.; Yoshihisa, T.; Tsukamoto, M. An Evaluation and Implementation of Rule-Based
Home Energy Management System Using the Rete Algorithm. Sci. World J. 2014, 2014, 591478

26. Hawkes, A.; Leach, M. Modelling high level system design and unit commitment for a microgrid.
Appl. Energy 2009, 86, 1253–1265.

27. Di Giorgio, A.; Pimpinella, L. An event driven Smart Home Controller enabling consumer economic saving
and automated Demand Side Management. Appl. Energy 2012, 96, 92–103.

28. Derakhshandeh, S.Y.; Masoum, A.S.; Deilami, S.; Masoum, M.A.S.; Golshan, M.E.H. Coordination of
Generation Scheduling with PEVs Charging in Industrial Microgrids. IEEE Trans. Power Syst. 2013, 28,
3451–3461.

29. Di Giorgio, A.; Liberati, F. Near real time load shifting control for residential electricity prosumers under
designed and market indexed pricing models. Appl. Energy 2014, 128, 119–132.

30. Silvente, J.; Kopanos, G.M.; Pistikopoulos, E.N.; Espuña, A. A rolling horizon optimization framework for
the simultaneous energy supply and demand planning in microgrids. Appl. Energy 2015, 155, 485–501.

31. Silvente, J.; Papageorgiou, L.G. An MILP formulation for the optimal management of microgrids with task
interruptions. Appl. Energy 2017, 206, 1131–1146.

32. Roh, H.T.; Lee, J.W. Residential Demand Response Scheduling With Multiclass Appliances in the Smart Grid.
IEEE Trans. Smart Grid 2016, 7, 94–104.

https://www.ifeu.de/wp-content/uploads/moma_Abschlussbericht_ak_V10_1_public.pdf
https://www.ifeu.de/wp-content/uploads/moma_Abschlussbericht_ak_V10_1_public.pdf
http://news.ontario.ca/
http://news.ontario.ca/
www.comed.com/Documents/
www.comed.com/Documents/


www.manaraa.com

Energies 2018, 11, 48 22 of 23

33. Kopanos, G.M.; Pistikopoulos, E.N. Reactive Scheduling by a Multiparametric Programming Rolling
Horizon Framework: A Case of a Network of Combined Heat and Power Units. Ind. Eng. Chem. Res. 2014,
53, 4366–4386.

34. Kopanos, G.M.; Georgiadis, M.C.; Pistikopoulos, E.N. Energy production planning of a network of micro
combined heat and power generators. Appl. Energy 2013, 102, 1522–1534.

35. Mohamed, F.A.; Koivo, H.N. Online management genetic algorithms of microgrid for residential application.
Energy Convers. Manag. 2012, 64, 562–568.

36. Jayasekara, N.; Wolfs, P. A hybrid approach based on GA and direct search for periodic optimization of
finely distributed storage. In Proceedings of the 2011 IEEE PES on Innovative Smart Grid Technologies Asia
(ISGT), Perth, Australia, 13–16 November 2011; pp. 1–8.

37. Pedrasa, M.A.A.; Spooner, T.D.; MacGill, I.F. Coordinated Scheduling of Residential Distributed Energy
Resources to Optimize Smart Home Energy Services. IEEE Trans. Smart Grid 2010, 1, 134–143.

38. Ha, L.D.; Ploix, S.; Zamai, E.; Jacomino, M. Tabu search for the optimization of household energy
consumption. In Proceedings of the 2006 IEEE International Conference on Information Reuse Integration,
Waikoloa Village, HI, USA, 16–18 September 2006; pp. 86–92.

39. Ji, L.; Niu, D.; Xu, M.; Huang, G. An optimization model for regional micro-grid system management based
on hybrid inexact stochastic-fuzzy chance-constrained programming. Int. J. Electr. Power Energy Syst. 2015,
64, 1025–1039.

40. Han, Y.; Young, P.; Zimmerle, D. Microgrid generation units optimum dispatch for fuel consumption
minimization. J. Ambient Intell. Humaniz. Comput. 2013, 4, 685–701.

41. Yang, Z.; Wu, R.; Yang, J.; Long, K.; You, P. Economical Operation of Microgrid With Various Devices Via
Distributed Optimization. IEEE Trans. Smart Grid 2016, 7, 857–867.

42. Gamarra, C.; Guerrero, J.M. Computational optimization techniques applied to microgrids planning:
A review. Renew. Sustain. Energy Rev. 2015, 48, 413–424.

43. Nosratabadi, S.M.; Hooshmand, R.A.; Gholipour, E. A comprehensive review on microgrid and virtual power
plant concepts employed for distributed energy resources scheduling in power systems. Renew. Sustain.
Energy Rev. 2017, 67, 341–363.

44. Matallanas, E.; Castillo-Cagigal, M.; Gutierrez, A.; Monasterio-Huelin, F.; Caamano-Martin, E.; Masa, D.;
Jimenez-Leube, J. Neural network controller for Active Demand-Side Management with PV energy in the
residential sector. Appl. Energy 2012, 91, 90–97.

45. O’Neill, D.; Levorato, M.; Goldsmith, A.; Mitra, U. Residential Demand Response Using Reinforcement
Learning. In Proceedings of the First IEEE International Conference on Smart Grid Communications
(SmartGridComm), Gaithersburg, MD, USA, 4–6 October 2010; pp. 409–414.

46. Chen, L.; Li, N.; Jiang, L.; Low, S.H. Optimal demand response: problem formulation and deterministic case.
In Control and Optimization Theory for Electric Smart Grids; Springer: Berlin, Germany, 2012.

47. Jiang, L.; Low, S. Multi-period optimal energy procurement and demand response in smart grid with
uncertain supply. In Proceedings of the 2011 50th IEEE Conference on Decision and Control and European
Control Conference (CDC-ECC), Orlando, FL, USA, 12–15 December 2011; pp. 4348–4353.

48. Jiang, L.; Low, S. Real-time demand response with uncertain renewable energy in smart grid. In Proceedings
of the 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton),
Monticello, IL, USA, 28–30 September 2011; pp. 1334–1341.

49. Zhu, B.; Tazvinga, H.; Xia, X. Switched Model Predictive Control for Energy Dispatching of a
Photovoltaic-Diesel-Battery Hybrid Power System. IEEE Trans. Control Syst. Technol. 2015, 23, 1229–1236.

50. Soares, A.; Gomes, A.; Antunes, C.H.; Oliveira, C. A Customized Evolutionary Algorithm for Multiobjective
Management of Residential Energy Resources. IEEE Trans. Ind. Inf. 2017, 13, 492–501.

51. Graditi, G.; Silvestre, M.L.D.; Gallea, R.; Sanseverino, E.R. Heuristic-Based Shiftable Loads Optimal
Management in Smart Micro-Grids. IEEE Trans. Ind. Inf. 2015, 11, 271–280.

52. Parisio, A.; Rikos, E.; Glielmo, L. A Model Predictive Control Approach to Microgrid Operation Optimization.
IEEE Trans. Control Syst. Technol. 2014, 22, 1813–1827.

53. Gambino, G.; Verrilli, F.; Vecchio, C.D.; Srinivasan, S.; Glielmo, L. Optimization of energy exchanges in
utility grids with applications to residential, industrial and tertiary cases. In Proceedings of the 2015 AEIT
International Annual Conference (AEIT), Naples, Italy, 14–16 October 2015; pp. 1–6.



www.manaraa.com

Energies 2018, 11, 48 23 of 23

54. Bemporad, A.; Morari, M. Control of systems integrating logic, dynamics, and constraints. Automatica 1999,
35, 407–427.

55. International Electrotechnical Commission. IEC 61851-1 ed2.0: Electric Vehicle Conductive Charging System—
Part 1: General Requirements; IEC: Geneva, Switzerland, 2010.

56. Paterakis, N.G.; Erdinç, O.; Bakirtzis, A.G.; Catalão, J.P.S. Optimal Household Appliances Scheduling
Under Day-Ahead Pricing and Load-Shaping Demand Response Strategies. IEEE Trans. Ind. Inf. 2015,
11, 1509–1519.
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